
Coarse-grained models for semi-dilute polymer solutions under good-solvent conditions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys.: Condens. Matter 21 115108

(http://iopscience.iop.org/0953-8984/21/11/115108)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 18:37

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/21/11
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 21 (2009) 115108 (6pp) doi:10.1088/0953-8984/21/11/115108

Coarse-grained models for semi-dilute
polymer solutions under good-solvent
conditions
Andrea Pelissetto
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Abstract
We determine coarse-grained models with a relatively small number of units which reproduce
the universal behavior of polymer solutions in the semi-dilute regime under good-solvent
conditions. We check both the thermodynamical behavior (osmotic pressure and chemical
potential) and structural properties (polymer size).

1. Introduction

Polymer solutions have been extensively studied by theorists
and experimentalists for many years, because of their
interesting physical and chemical properties and for their many
technological applications. When the degree of polymerization
N is large and the solution is under good-solvent conditions,
the behavior is now well understood. In this regime several
properties are universal, that is independent of chemical
details, and obey general scaling laws which can be derived
by using the renormalization group (RG) [1–4]. A quantitative
determination of polymer universal properties is often obtained
by means of Monte Carlo (MC) or molecular dynamics (MD)
methods, even though, in some cases, perturbative field
theory [4, 5] or integral-equation approaches [6] also give quite
accurate predictions. In MC or MD studies, one investigates
the behavior of systems of polymers of fixed length N ; then,
one can extrapolate to the infinite-length limit, in order to
determine the universal behavior. Because of the presence
of strong scaling corrections, a reliable extrapolation requires
data for several large values of N , which is a computationally
very demanding task. Of course, how large scaling corrections
are and how large N should be in order to be close to the
asymptotic regime—otherwise, no extrapolation is possible—
depends on the model one is considering: while the large-N
limit is universal, corrections depend on the model.

Over the years two different strategies have been put
forward to determine models with ‘small’ scaling corrections,

which allow one to compute universal polymer properties
with a relatively limited computational effort. One of these
approaches starts from the general principles of the RG.
Consider a generic Hamiltonian H. One can write H in
terms of the RG fixed-point Hamiltonian H∗ and of the RG
perturbations Oi of the fixed point [7]:

H = H∗ +
∑

i

αiOi , (1)

where αi are model- and N-dependent coefficients. In the
polymer case there are two relevant operators (we do not
consider the identity operator that does not play any role here)
and thus two quantities should be tuned in order to observe the
universal behavior: the polymer length N should go to infinity
and the monomer density cm to zero. The other operators
are irrelevant perturbations, since their RG dimensions yi are
negative, and give rise to the corrections to scaling. For
instance, the leading irrelevant operator (the one with the
smallest |yi |) gives corrections proportional to α� ∼ v� N−� ,
� = −|yi |ν = 0.515 ± 0.017 [8]. Note that the correction in
any quantity is always proportional to the coupling v�. Thus,
in a model which is such that v� = 0, the leading scaling
correction vanishes for any quantity. In these optimal models
the convergence is faster and thus the asymptotic behavior is
observed for smaller values of N . An example of an optimal
model is the lattice Domb–Joyce model [9] for a particular
value of the coupling w; it shows a faster convergence to
the infinite-N limit than the more common self-avoiding walk
model (see, e.g., [8, 10] and references therein).
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Figure 1. A coarse-grained model of a ring polymer with n = 6
units. Beside the intermolecular potential W6(r), three different
intramolecular potentials V6,k(r), k = 1, 2, 3 must be defined. V6,1(r)
gives the interaction between two neighbors along the chain, V6,2(r)
between two next-to-nearest neighbors, V6,3(r) between two atoms
which have two atoms in between (the chemical distance is three).

(This figure is in colour only in the electronic version)

A different approach is based on coarse-grained models in
which the polymer solution is replaced by a fluid of simple
molecules which interact by means of effective potentials
which are such as to reproduce, for instance, polymer center-
of-mass correlation functions [11–16]. The main difficulty
of this approach is that the exact coarse-graining procedure
generates many-body interactions [17]. If all of them are taken
into account, the coarse-grained model is exactly equivalent
to the original one. However, in practice only two-body
interactions can be considered and this limits the usefulness
of the model to the dilute regime defined by � = c/c∗ � 1,
where c is the polymer number density (c = cm/N , where cm

is the monomer number density) and c∗ is the overlap density
conventionally defined as

1

c∗ = 4π

3
R̂3

g , (2)

where R̂g is the zero-density radius of gyration. In order
to be accurate in the semi-dilute regime, coarse-grained
models with pairwise interactions require density-dependent
pair potentials [14]. They, however, spoil the simplicity of
the coarse-graining procedure and introduce some theoretical
difficulties related to the fact that interactions are now state-
dependent [18]. As suggested in [19], these shortcomings
can be overcome by switching to a multi-blob representation.
In the spirit of the de Gennes–Pincus blob picture [1], one
replaces a polymer of length N by a polyatomic molecule
made up by n effective units; each unit effectively represents
a blob of N/n monomers. A simple argument indicates
that this model might be accurate up to packing fractions
� � n3ν−1, where ν ≈ 0.5876 is the Flory exponent1.
Thus, by increasing n one obtains a model which is also
accurate in the semi-dilute region. However, this remarkable
improvement has a cost. To understand the problem, let us

1 At present the most accurate estimates of ν are ν = 0.587 58±0.000 07 [8],
ν = 0.5874 ± 0.0002 [20], ν = 0.587 65 ± 0.000 20 [21], ν = 0.5876 ±
0.0002 [22] and ν = 0.5876 ± 0.0002 [23] (assuming 0.50 � θ � 0.53). For
an extensive list of results, see [24].

imagine we are dealing with ring polymers so that there are no
end effects. Disregarding many-body interactions, in order to
specify the model we must define an intermolecular potential
Wn(r) and �n/2� intramolecular potentials Vn,k(r), where k
gives the chemical distance (shortest-path distance) of two
atoms along the molecule, see figure 1. Note that we have
added a suffix n to the potentials, to make it clear that they
depend on the number n of units. In the linear-polymer case,
since there is no translation invariance along the chain, there
are several intermolecular potentials and a larger numbers of
intramolecular potentials. Thus, the complexity of determining
many-body interactions is replaced in the multi-blob approach
by the difficulty of determining a relatively large number of
effective potentials from suitably defined polymer correlation
functions. In practice, this approach can be implemented
exactly only for n = 2 [25].

In order to go beyond the diatomic model, [19] made the
approximation that the potentials are essentially independent
of n and on the position of the blobs in the chain, i.e. made the
transferability approximation

Wn(r) = W1(r),

Vn,k(r) = W1(r) for k > 1,

Vn,1(r) = V2,1(r).

(3)

In this paper we show that this approximation is not accurate
unless n is quite large (n � 1000); for n = 26 (this would be
the appropriate number of units to investigate solutions with
polymer packing fraction � � 10) the model significantly
overestimates the osmotic pressure. We will propose a differ-
ent strategy which will provide us with models which repro-
duce with good accuracy the thermodynamic behavior up to
� ≈ 10.

The paper is organized as follows. In section 2 we
define the Hamiltonian of the model and the quantities we
compute. In section 3 we discuss the multi-blob model
introduced in [19], while in section 4 we discuss a different,
more phenomenological approach. Finally, in section 5 we
draw our conclusions. In the appendix, we compute the
chemical potential for the optimal coarse-grained models.

2. Definitions

As in [19] a polymer is modeled by a polyatomic molecule
with n atoms, each of them corresponding to a polymer blob.
Atoms belonging to different molecules interact by means of an
intermolecular potential W (r). The potential between atoms
belonging to the same molecule is also given by W (r), if
the two atoms are not nearest neighbors along the molecule
(the chemical, or shortest-path, distance is larger than one);
otherwise, the corresponding potential is W (r)+wnn(r). Thus,
the Hamiltonian for a polymer solution made up by L polymer
chains is

H =
L∑

i=1

n−1∑

α=1

wnn(r(i)
α − r(i)

α+1) +
L∑

i=1

∑

1�α<β�n

W (r(i)
α − r(i)

β )

+
∑

1�i< j�L

n∑

α,β=1

W (r(i)
α − r( j)

β ), (4)

where r(i)
α is the position of atom α belonging to molecule i .
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In order to understand the accuracy of this model, we
shall compare the results for the osmotic pressure 	 with
high-precision results recently obtained from monomer-level
simulations [10]. For N → ∞ the osmotic pressure 	 satisfies
the general scaling law

Z ≡ 	

kBT c
≈ fZ (�), (5)

where c is the polymer number density and � is the polymer
packing fraction

� = 4π R̂3
gc

3
. (6)

The function fZ (�) is universal and given by [10]

fZ (�) = (1 + 2.503 42� + 2.5454�2 + 1.029 75�3)0.6555

(1 + 0.500 318�)0.6555
.

(7)
For � � 10, this expression is quite accurate, the error being
less than 1–2%. For small � we have Z = 1 + a2� +
O(�2). The coefficient a2 is directly related to the second
virial coefficient and to the so-called interpenetration ratio2


 = a2

3
√

π
. (8)

For N → ∞, 
 converges to a universal constant 
∗ which is
known quite accurately [26]:


∗ = 0.246 93 ± 0.000 13. (9)

Other estimates of 
∗ are reported in [26].
The determination of the second virial coefficient for

polymeric systems is quite easy; efficient algorithms are
discussed in [26, 27]. The direct determination of the osmotic
pressure instead is not an easy task: one might use the
repulsive-wall thermodynamic integration method [28–30],
look at the sedimentation equilibrium in an external constant
force field [30, 31], or compute it from measurements of
the chemical potential [30, 32]. Here we shall compute the
derivative

K ≡ 1

kBT

∂	

∂c
. (10)

The determination of K is much simpler. By using the
compressibility rule [33], it can be derived from the total
structure factor, which can be easily measured in simulations.
Some technical details are reported in [10].

3. A first multi-blob model

In [19] the interaction potentials wnn(r) and W (r) are defined
as those appropriate for the coarse-grained model with n =
1, 2, i.e.

W (r) = B exp[−α(r/r̂g)],
wnn(r) = A(r/r̂g − a0)

2,
(11)

2 If we write Z = 1 + B2c + O(c2), where B2 is the second virial coefficient,
we have a2 = 3B2/(4π R̂3

g) and 
 ≡ 1
4 π−3/2 B2 R̂−3

g .

where r̂g is the zero-density radius of gyration of the blob.
By comparing with MC results for self-avoiding walks with
L = 2000, one obtains [19]

α = 0.80, B = 1.92,

A = 0.534, a0 = 0.730.
(12)

It is convenient to introduce an adimensional scale

ρ = √
αr/r̂g, (13)

so that

W (ρ) = Be−ρ2
wnn(ρ) = a(ρ − ρ0)

2. (14)

Parameters (12) correspond to

B = 1.92 a = 0.668 ρ0 = 0.653. (15)

In the multi-segment philosophy of [19], one must also relate
the radius of gyration R̂g of the polymer to the radius of
gyration R̂c,g of the coarse-grained molecule. A simple relation
can be derived by assuming factorization of the polymer form
factor:

R̂2
g = R̂2

c,g + r̂ 2
g = r̂ 2

g

α

(
α R̂2

c,g

r̂ 2
g

+ α

)
. (16)

The correction due to r̂ 2
g (in the units we use, see (13), it

amounts to adding α = 0.8 to the estimated R̂2
c,g) is essential

for small values of n, but becomes a tiny correction for n � 25.
We determine the interpenetration ratio 
 for several

values of n; the results are shown in figure 2. For n = 1 the
result 
 = 0.2576 is close to the asymptotic one (9). The small
difference is due to the fact that the parameters (12) are slightly
different from those that are appropriate for the asymptotic pair
potential reported in [16]. As n increases, the interpenetration
ratio 
 increases too, and becomes significantly larger than
the correct result: only for large values of n does it decrease
again and converge to the asymptotic value (9). For small
values of n, say n ≈ 2–10, there may be two reasons for the
discrepancy. First, relation (16) may not provide the correct
radius of gyration of the polymer. Second, the transferability
approximation may not be appropriate. On the other hand,
for n � 25 we do not expect R̂g to differ significantly from
R̂c,g, so that the observed deviations are most probably a
consequence of the failure of the approximation (3). To verify
this statement, for n = 26 we compute the ratio R̂2

g/R̂2
c,g (note

that this quantity is universal and depends only on n) by direct
monomer-level simulations. We use Domb–Joyce walks with
5200 monomers at w∗ = 0.505 838, a value which is close to
the optimal one (see [26] for details on the model). We obtain
R̂2

g/R̂2
c,g ≈ 1.069. Since the blobs have 200 monomers each,

we expect this estimate to be close to the asymptotic (N → ∞)
value. Equation (16) gives instead R̂2

g/R̂2
c,g ≈ 1.029. If we use

the MC estimate of R̂2
g/R̂2

c,g, we obtain 
 ≈ 0.3133 instead of
the result 
 ≈ 0.3317 reported in figure 2. The difference
is tiny and the new estimate is only slightly better than the
previous one.
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Figure 2. Estimates of the interpenetration ratio 
 for n � 26. We
use potentials (14), fixing the parameters as in (15). The radius of
gyration is computed by using (16). The asymptotic universal value
for polymer solutions is 
∗ = 0.246 93 ± 0.000 13 [26]. For
n = 100 and 1000, we obtain 
 ≈ 0.2957 and 0.264, respectively.

For n = 26 we also compute the inverse compressibility
K for two different values of the polymer packing fraction,
� ≈ 1 and 10. More precisely, we perform two MC runs at
�c = 1 and 10, where

�c ≡ 4π R3
c,gc

3
. (17)

We obtain
�c = 1 K = 7.71(4),

�c = 10 K = 115.7(5).
(18)

If we use (16), these two values of �c correspond to � =
1.04 and 10.44; the asymptotic expression (7) then predicts
K = 5.1 and 82. If instead we use the MC determined ratio
R̂2

g/R̂2
c,g ≈ 1.069, we obtain � = 1.14 and � = 11.42

and K = 5.6 and K = 92, respectively. In both cases, we
observe a significant difference between the estimates (18) and
the asymptotic prediction (7).

These results allow us to conclude that the transferability
hypothesis does not provide a model which reproduces the
polymer thermodynamics with good accuracy. Therefore, we
must somehow take into account the n dependence of the
potentials. An exact treatment is technically impossible. A
phenomenological approach will be discussed in section 4.

4. A different parametrization of the coarse-grained
model

In the previous section we have shown that the transferability
approximation fails. Here we use a more phenomenological
approach and determine a different set of parameters
which provide coarse-grained models whose thermodynamical
behavior is very close to that of large-N polymer systems.
We do not consider small values of n, since we would like
to apply the model in the semi-dilute region � � 5–10 and
to investigate the behavior of binary mixtures of polymers and
small colloids (in this case, it is natural to have a blob size
comparable to the dimension of the colloids). Since the relation

between R̂g and R̂c,g is not easily defined, we simply set
R̂g = R̂c,g. This definition does not allow us to consider very
small values of n and makes the interpretation of the model
as the result of a coarse-graining procedure less clear. It is,
however, very convenient in practice since, at the end, we only
want a model which shows the correct universal behavior and
which can be simulated with a limited computational effort.
We use the same Hamiltonian (4) as before, with wnn(r) and
W (r) defined in (14). The parameters a, ρ0, and B are assumed
to depend on n and, for each n, are determined as follows.

(a) We choose arbitrarily ρ0. This parameter is kept fixed in
the procedure.

(b) We perform zero-density simulations for several values of
a and B . By using data reweighting methods, this allows
us to determine the interpenetration ratio as a function of
these two parameters, i.e. to obtain the function 
(a, B).
Then, for each value of a we determine Bopt(a), which is
such that 
(a, Bopt) = 
∗, where 
∗ is the asymptotic
value (9).

(c) We perform MC simulations at � = 10 for several values
of a, fixing each time B = Bopt(a). We measure the
inverse compressibility K and then select the value of a
such that K ≈ 77, which is the asymptotic value obtained
by using (7).

We apply this procedure to two values of ρ0, ρ0 = 0.653
as in (12), and ρ0 = 0. The results of the simulations are
reported in table 1. By requiring K (� = 10) to give the
asymptotic result K ≈ 77, we can select the optimal values
of the parameters:

n = 26 a = 0.15 B = 8.28 ρ0 = 0.653,

n = 26 a = 0.125 B = 8.86 ρ0 = 0,

n = 51 a = 0.12 B = 9.178 ρ0 = 0,

n = 101 a = 0.12 B = 8.50 ρ0 = 0.

(19)

Note that ρ0 does not play a great role and the values of a and
B corresponding to ρ0 = 0.653 and 0 are close. Moreover, at
fixed ρ0, the n dependence of the coefficients is tiny.

Since, by construction, these models give the correct in-
terpenetration ratio 
 , and therefore the correct thermodynam-
ical behavior in the dilute regime, and the correct inverse com-
pressibility K for � = 10, we expect them to reproduce quite
accurately the thermodynamical behavior of polymer solutions
for any � � 10. In order to check the behavior for interme-
diate values of the concentration, we consider the model with
n = 26, a = 0.125, B = 8.86, and ρ0 = 0, and compute K
for some intermediate values of �. We obtain

� = 4 K = 23.3 ± 0.2 Kasympt ≈ 24.1, (20)

� = 6 K = 39.3 ± 0.5 Kasympt ≈ 40.2, (21)

� = 8 K = 58.6 ± 0.5 Kasympt ≈ 58.0. (22)

Here Kasympt is the asymptotic value obtained by using (7).
Results are quite close, indicating that the thermodynamical
behavior is correctly reproduced in the whole interval � � 10.

4
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Table 1. Estimates of the inverse compressibility K (�) and of the size ratio Sg(�) (see (23) for the definition) for polymer packing fractions
� = 1, 10 for several values of n, a, B, ρ0. The results corresponding to n = ∞ are obtained by using (7) and (24).

n a Bopt ρ0 K (� = 1) K (� = 10) Sg(� = 1) Sg(� = 10)

26 0.6 0.542 0.653 4.64(3) 47.8(1) 0.9374(9) 0.805(1)
26 0.2 4.0 0.653 4.76(2) 65.9(3) 0.9322(6) 0.772(2)
26 0.175 5.507 0.653 4.79(2) 70.7(7) 0.9335(6) 0.771(3)
26 0.15 8.28 0.653 4.78(2) 77.3(5) 0.9334(6) 0.772(2)
26 0.15 5.058 0 4.81(2) 69.4(7) 0.9340(7) 0.773(4)
26 0.125 8.86 0 4.89(3) 78.4(6) 0.9286(6) 0.761(2)
51 0.125 8.075 0 4.84(2) 74.2(6) 0.9296(5) 0.738(2)
51 0.12 9.178 0 4.80(3) 75.6(6) 0.9301(5) 0.745(3)

101 0.125 7.60 0 4.89(3) 73.2(2.5) 0.9302(8) 0.703(6)
101 0.12 8.50 0 4.87(7) 75.4(1.8) 0.9293(8) 0.709(4)

∞ 4.90 77.4 0.9287 0.689

In the appendix we present another test, computing the
chemical potential μ as a function of �. The results are
consistent with what is expected on the basis of (7).

It is also interesting to verify the accuracy of the coarse-
grained models for the calculation of structural properties. For
this purpose, we consider the ratio

Sg(�) ≡ R2
g(�)

R̂2
g

. (23)

Such a quantity converges to a universal function fg(�) as
the polymer length goes to infinity. This function has been
estimated quite accurately in [10]:

Sg(�) ≈ fg(�)

= (1 + 0.332 72�)0.115

(1 + 0.986 633� + 0.499 436�2 + 0.049 5970�3)0.115
.

(24)

Estimates of Sg(�) are reported in table 1. For � = 1,
there is perfect agreement in all cases, and therefore, in the
dilute regime the models are also appropriate for the study
of structural properties. For � = 10 we instead observe
quite large differences. For instance, for n = 26 all models
overestimate the ratio by 10%. However, note that the
discrepancy rapidly decreases with increasing n, and for n =
101, the ratio Sg(� = 10) is quite close to the asymptotic
value.

The results for Sg(�) allow us to reinterpret the coarse-
grained model as an optimal model in the RG sense, as we have
discussed in the Introduction. Indeed, at fixed � we expect

Sg(�, N) = fg(�) + α1(�)

n�
+ α2(�)

n�2
+ · · · (25)

where � ≈ 0.5, �2 ≈ 1. The coefficients α1(�) and
α2(�) depend on the Hamiltonian parameters. However, for
the models (19) with ρ0 = 0, a and B vary only slightly and
thus we expect this dependence to be tiny. If we neglect it, all
results are consistent with α1(�) ≈ 0 and α2(�) ≈ 2. In other
words, our phenomenological approach naturally provides an
approximately optimal model in the RG sense.

5. Conclusions

In this paper we discuss coarse-grained models which provide
an effective accurate description of polymer solutions in the
semi-dilute regime. We start from the multi-blob model of [19]
and discuss two different strategies one can use to determine
the coefficients that parametrize the interaction potentials.

We first consider the method of [19], which is essentially
based on the transferability hypothesis (3), and show that
the resulting model is not very accurate: both in the
dilute and in the semi-dilute regime the osmotic pressure is
significantly overestimated. Next, we consider a different,
more phenomenological approach which, by its very definition,
gives models which reproduce the thermodynamical behavior
of polymer solutions in the semi-dilute regime. With n = 26
units, the osmotic pressure determined in the coarse-grained
model is very close to that of large-N polymer solutions up to
� ≈ 10, with differences of a few per cent. These models are
also reasonably accurate for structural properties, although in
this case somewhat larger values of n, n = 100 say, must be
considered.

It is interesting to note that the interaction potentials we
obtain for n � 26 are quite different from those appropriate
for effective models with n = 1, 2. Indeed, in all cases the
constant B that parametrizes the intermolecular potential (11)
is quite large (B ≈ 8–9), so that the blobs are not soft particles.
Second, the spring constant A is significantly smaller (A ≈
0.1) than that obtained for n = 2, see (12). This means that the
blob–blob distance has a very broad distribution. A posteriori,
it is possible to justify both results physically. Consider a
real polymer of length L, with hard-core monomers, and a
coarse-grained model with n units. If n is small, L/n is
relatively large. Hence, each blob contains many monomers
and therefore it is relatively easy for the blobs to overlap.
If, instead, n is large, each blob contains a small number of
monomers. In this case, the repulsion of the monomers makes
it difficult for the blobs to overlap. In the limiting case, n = L,
no overlap is possible. Thus, as n increases we expect the soft-
core potentials to turn into strongly repulsive ones. Also, the
decrease in A has an analogous interpretation. If n is small,
the blob size has a narrow distribution since it is obtained by
averaging over a large number of monomers. The blob–blob
distance should be determined by the blob size, hence it should

5
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also have a narrow distribution. On the other hand, if n is
large, we expect a broader distribution both for the blob size
and for the blob–blob distance, because of the small number of
monomers in each blob.

The coarse-grained model we have considered is defined
off the lattice. However, it is probably of interest to check
whether a similar model can be defined on the lattice, since
lattice models are particularly convenient from a computational
point of view. One possibility would be to start from
the Domb–Joyce model (the parameter w, see [10] for a
precise definition, is essentially equivalent to B), giving
up the condition that two successive monomers belong to
nearest-neighbor lattice sites. One could thus allow arbitrary
bond lengths controlled by an additional tethering potential
depending on a parameter a. Tuning a and w, one might obtain
a lattice course-grained model appropriate for the study of
thermodynamic and structural properties of polymer solutions
under good-solvent conditions in the semi-dilute regime.
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Appendix. Computation of the chemical potential

In this appendix we report another test of the coarse-
grained models (19), by computing the relation between the
chemical potential μ and �. For this purpose we perform
grand-canonical simulations using the configurational-bias
method [34]. In these simulations we fix the fugacity z = eβμ

and compute the density, or equivalently �. Some of the results
are reported in table A.1. The results should be compared with
the general thermodynamic relation

βμ(�) = ln � + μ0 +
∫ �

0

K (ϕ) − 1

ϕ
dϕ, (A.1)

where μ0 is a model-dependent constant and K the inverse
compressibility. In order to determine μ0, for each model we
have performed a simulation with a large negative values of μ,
so that � � 0.01 and we have required βμ = ln � + μ0 +
3
√

π
∗�, which is the low-density expansion of (A.1). If

Table A.1. Estimates of the polymer packing fraction �(μ) for
several values of n and βμ such that � ≈ 0.1, 1, 6. Here βμpred is
the prediction (A.1) with K (�) computed by using (7). The results
refer to the optimal models (19) with ρ0 = 0.

n βμ � βμpred

26 −7.824 05 0.0993(1) −7.823
−2.407 95 1.0164(2) −2.382
26.025 8 6.0167(5) 26.64

51 −6.502 29 0.1022(3) −6.498
−1.203 97 0.9974(7) −1.187
27.230 5 6.046(1) 28.13

101 −2.673 65 0.1023(3) −2.668
2.674 15 1.0089(7) 2.698

31.638 4 6.143(2) 32.61

the coarse-grained models provide good approximations of the
universal behavior, (A.1) should be satisfied for all �, once we
compute K (�) by using (7). The results reported in the Table
show that this relation is well satisfied. In the dilute regime
differences are less than 1%, while in the semi-dilute regime
(� ≈ 6) it rises to 3%.
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